This document presents a specification for a version 2 of Git’s wire protocol. Protocol v2 will improve upon v1 in the following ways:

  • Instead of multiple service names, multiple commands will be supported by a single service

  • Easily extendable as capabilities are moved into their own section of the protocol, no longer being hidden behind a NUL byte and limited by the size of a pkt-line

  • Separate out other information hidden behind NUL bytes (e.g. agent string as a capability and symrefs can be requested using ls-refs)

  • Reference advertisement will be omitted unless explicitly requested

  • ls-refs command to explicitly request some refs

  • Designed with http and stateless-rpc in mind. With clear flush semantics the http remote helper can simply act as a proxy

In protocol v2 communication is command oriented. When first contacting a server a list of capabilities will advertised. Some of these capabilities will be commands which a client can request be executed. Once a command has completed, a client can reuse the connection and request that other commands be executed.

Packet-Line Framing

All communication is done using packet-line framing, just as in v1. See Documentation/technical/pack-protocol.txt and Documentation/technical/protocol-common.txt for more information.

In protocol v2 these special packets will have the following semantics:

  • 0000 Flush Packet (flush-pkt) - indicates the end of a message

  • 0001 Delimiter Packet (delim-pkt) - separates sections of a message

  • 0002 Message Packet (response-end-pkt) - indicates the end of a response for stateless connections

Initial Client Request

In general a client can request to speak protocol v2 by sending version=2 through the respective side-channel for the transport being used which inevitably sets GIT_PROTOCOL. More information can be found in pack-protocol.txt and http-protocol.txt. In all cases the response from the server is the capability advertisement.

Git Transport

When using the git:// transport, you can request to use protocol v2 by sending "version=2" as an extra parameter:

003egit-upload-pack /project.git\0host=myserver.com\0\0version=2\0

SSH and File Transport

When using either the ssh:// or file:// transport, the GIT_PROTOCOL environment variable must be set explicitly to include "version=2".

HTTP Transport

When using the http:// or https:// transport a client makes a "smart" info/refs request as described in http-protocol.txt and requests that v2 be used by supplying "version=2" in the Git-Protocol header.

C: GET $GIT_URL/info/refs?service=git-upload-pack HTTP/1.0
C: Git-Protocol: version=2

A v2 server would reply:

S: 200 OK
S: <Some headers>
S: ...
S:
S: 000eversion 2\n
S: <capability-advertisement>

Subsequent requests are then made directly to the service $GIT_URL/git-upload-pack. (This works the same for git-receive-pack).

Capability Advertisement

A server which decides to communicate (based on a request from a client) using protocol version 2, notifies the client by sending a version string in its initial response followed by an advertisement of its capabilities. Each capability is a key with an optional value. Clients must ignore all unknown keys. Semantics of unknown values are left to the definition of each key. Some capabilities will describe commands which can be requested to be executed by the client.

capability-advertisement = protocol-version
                           capability-list
                           flush-pkt
protocol-version = PKT-LINE("version 2" LF)
capability-list = *capability
capability = PKT-LINE(key[=value] LF)
key = 1*(ALPHA | DIGIT | "-_")
value = 1*(ALPHA | DIGIT | " -_.,?\/{}[]()<>!@#$%^&*+=:;")

Command Request

After receiving the capability advertisement, a client can then issue a request to select the command it wants with any particular capabilities or arguments. There is then an optional section where the client can provide any command specific parameters or queries. Only a single command can be requested at a time.

request = empty-request | command-request
empty-request = flush-pkt
command-request = command
                  capability-list
                  [command-args]
                  flush-pkt
command = PKT-LINE("command=" key LF)
command-args = delim-pkt
               *command-specific-arg
command-specific-args are packet line framed arguments defined by
each individual command.

The server will then check to ensure that the client’s request is comprised of a valid command as well as valid capabilities which were advertised. If the request is valid the server will then execute the command. A server MUST wait till it has received the client’s entire request before issuing a response. The format of the response is determined by the command being executed, but in all cases a flush-pkt indicates the end of the response.

When a command has finished, and the client has received the entire response from the server, a client can either request that another command be executed or can terminate the connection. A client may optionally send an empty request consisting of just a flush-pkt to indicate that no more requests will be made.

Capabilities

There are two different types of capabilities: normal capabilities, which can be used to convey information or alter the behavior of a request, and commands, which are the core actions that a client wants to perform (fetch, push, etc).

Protocol version 2 is stateless by default. This means that all commands must only last a single round and be stateless from the perspective of the server side, unless the client has requested a capability indicating that state should be maintained by the server. Clients MUST NOT require state management on the server side in order to function correctly. This permits simple round-robin load-balancing on the server side, without needing to worry about state management.

agent

The server can advertise the agent capability with a value X (in the form agent=X) to notify the client that the server is running version X. The client may optionally send its own agent string by including the agent capability with a value Y (in the form agent=Y) in its request to the server (but it MUST NOT do so if the server did not advertise the agent capability). The X and Y strings may contain any printable ASCII characters except space (i.e., the byte range 32 < x < 127), and are typically of the form "package/version" (e.g., "git/1.8.3.1"). The agent strings are purely informative for statistics and debugging purposes, and MUST NOT be used to programmatically assume the presence or absence of particular features.

ls-refs

ls-refs is the command used to request a reference advertisement in v2. Unlike the current reference advertisement, ls-refs takes in arguments which can be used to limit the refs sent from the server.

Additional features not supported in the base command will be advertised as the value of the command in the capability advertisement in the form of a space separated list of features: "<command>=<feature 1> <feature 2>"

ls-refs takes in the following arguments:

symrefs
    In addition to the object pointed by it, show the underlying ref
    pointed by it when showing a symbolic ref.
peel
    Show peeled tags.
ref-prefix <prefix>
    When specified, only references having a prefix matching one of
    the provided prefixes are displayed.

The output of ls-refs is as follows:

output = *ref
         flush-pkt
ref = PKT-LINE(obj-id SP refname *(SP ref-attribute) LF)
ref-attribute = (symref | peeled)
symref = "symref-target:" symref-target
peeled = "peeled:" obj-id

fetch

fetch is the command used to fetch a packfile in v2. It can be looked at as a modified version of the v1 fetch where the ref-advertisement is stripped out (since the ls-refs command fills that role) and the message format is tweaked to eliminate redundancies and permit easy addition of future extensions.

Additional features not supported in the base command will be advertised as the value of the command in the capability advertisement in the form of a space separated list of features: "<command>=<feature 1> <feature 2>"

A fetch request can take the following arguments:

want <oid>
    Indicates to the server an object which the client wants to
    retrieve.  Wants can be anything and are not limited to
    advertised objects.
have <oid>
    Indicates to the server an object which the client has locally.
    This allows the server to make a packfile which only contains
    the objects that the client needs. Multiple 'have' lines can be
    supplied.
done
    Indicates to the server that negotiation should terminate (or
    not even begin if performing a clone) and that the server should
    use the information supplied in the request to construct the
    packfile.
thin-pack
    Request that a thin pack be sent, which is a pack with deltas
    which reference base objects not contained within the pack (but
    are known to exist at the receiving end). This can reduce the
    network traffic significantly, but it requires the receiving end
    to know how to "thicken" these packs by adding the missing bases
    to the pack.
no-progress
    Request that progress information that would normally be sent on
    side-band channel 2, during the packfile transfer, should not be
    sent.  However, the side-band channel 3 is still used for error
    responses.
include-tag
    Request that annotated tags should be sent if the objects they
    point to are being sent.
ofs-delta
    Indicate that the client understands PACKv2 with delta referring
    to its base by position in pack rather than by an oid.  That is,
    they can read OBJ_OFS_DELTA (aka type 6) in a packfile.

If the shallow feature is advertised the following arguments can be included in the clients request as well as the potential addition of the shallow-info section in the server’s response as explained below.

shallow <oid>
    A client must notify the server of all commits for which it only
    has shallow copies (meaning that it doesn't have the parents of
    a commit) by supplying a 'shallow <oid>' line for each such
    object so that the server is aware of the limitations of the
    client's history.  This is so that the server is aware that the
    client may not have all objects reachable from such commits.
deepen <depth>
    Requests that the fetch/clone should be shallow having a commit
    depth of <depth> relative to the remote side.
deepen-relative
    Requests that the semantics of the "deepen" command be changed
    to indicate that the depth requested is relative to the client's
    current shallow boundary, instead of relative to the requested
    commits.
deepen-since <timestamp>
    Requests that the shallow clone/fetch should be cut at a
    specific time, instead of depth.  Internally it's equivalent to
    doing "git rev-list --max-age=<timestamp>". Cannot be used with
    "deepen".
deepen-not <rev>
    Requests that the shallow clone/fetch should be cut at a
    specific revision specified by '<rev>', instead of a depth.
    Internally it's equivalent of doing "git rev-list --not <rev>".
    Cannot be used with "deepen", but can be used with
    "deepen-since".

If the filter feature is advertised, the following argument can be included in the client’s request:

filter <filter-spec>
    Request that various objects from the packfile be omitted
    using one of several filtering techniques. These are intended
    for use with partial clone and partial fetch operations. See
    `rev-list` for possible "filter-spec" values. When communicating
    with other processes, senders SHOULD translate scaled integers
    (e.g. "1k") into a fully-expanded form (e.g. "1024") to aid
    interoperability with older receivers that may not understand
    newly-invented scaling suffixes. However, receivers SHOULD
    accept the following suffixes: 'k', 'm', and 'g' for 1024,
    1048576, and 1073741824, respectively.

If the ref-in-want feature is advertised, the following argument can be included in the client’s request as well as the potential addition of the wanted-refs section in the server’s response as explained below.

want-ref <ref>
    Indicates to the server that the client wants to retrieve a
    particular ref, where <ref> is the full name of a ref on the
    server.

If the sideband-all feature is advertised, the following argument can be included in the client’s request:

sideband-all
    Instruct the server to send the whole response multiplexed, not just
    the packfile section. All non-flush and non-delim PKT-LINE in the
    response (not only in the packfile section) will then start with a byte
    indicating its sideband (1, 2, or 3), and the server may send "0005\2"
    (a PKT-LINE of sideband 2 with no payload) as a keepalive packet.

If the packfile-uris feature is advertised, the following argument can be included in the client’s request as well as the potential addition of the packfile-uris section in the server’s response as explained below.

packfile-uris <comma-separated list of protocols>
    Indicates to the server that the client is willing to receive
    URIs of any of the given protocols in place of objects in the
    sent packfile. Before performing the connectivity check, the
    client should download from all given URIs. Currently, the
    protocols supported are "http" and "https".

The response of fetch is broken into a number of sections separated by delimiter packets (0001), with each section beginning with its section header. Most sections are sent only when the packfile is sent.

output = acknowledgements flush-pkt |
         [acknowledgments delim-pkt] [shallow-info delim-pkt]
         [wanted-refs delim-pkt] [packfile-uris delim-pkt]
         packfile flush-pkt
acknowledgments = PKT-LINE("acknowledgments" LF)
                  (nak | *ack)
                  (ready)
ready = PKT-LINE("ready" LF)
nak = PKT-LINE("NAK" LF)
ack = PKT-LINE("ACK" SP obj-id LF)
shallow-info = PKT-LINE("shallow-info" LF)
               *PKT-LINE((shallow | unshallow) LF)
shallow = "shallow" SP obj-id
unshallow = "unshallow" SP obj-id
wanted-refs = PKT-LINE("wanted-refs" LF)
              *PKT-LINE(wanted-ref LF)
wanted-ref = obj-id SP refname
packfile-uris = PKT-LINE("packfile-uris" LF) *packfile-uri
packfile-uri = PKT-LINE(40*(HEXDIGIT) SP *%x20-ff LF)
packfile = PKT-LINE("packfile" LF)
           *PKT-LINE(%x01-03 *%x00-ff)
acknowledgments section
    * If the client determines that it is finished with negotiations by
      sending a "done" line (thus requiring the server to send a packfile),
      the acknowledgments sections MUST be omitted from the server's
      response.
  • Always begins with the section header "acknowledgments"

  • The server will respond with "NAK" if none of the object ids sent as have lines were common.

  • The server will respond with "ACK obj-id" for all of the object ids sent as have lines which are common.

  • A response cannot have both "ACK" lines as well as a "NAK" line.

  • The server will respond with a "ready" line indicating that the server has found an acceptable common base and is ready to make and send a packfile (which will be found in the packfile section of the same response)

  • If the server has found a suitable cut point and has decided to send a "ready" line, then the server can decide to (as an optimization) omit any "ACK" lines it would have sent during its response. This is because the server will have already determined the objects it plans to send to the client and no further negotiation is needed.

    shallow-info section
        * If the client has requested a shallow fetch/clone, a shallow
          client requests a fetch or the server is shallow then the
          server's response may include a shallow-info section.  The
          shallow-info section will be included if (due to one of the
          above conditions) the server needs to inform the client of any
          shallow boundaries or adjustments to the clients already
          existing shallow boundaries.
  • Always begins with the section header "shallow-info"

  • If a positive depth is requested, the server will compute the set of commits which are no deeper than the desired depth.

  • The server sends a "shallow obj-id" line for each commit whose parents will not be sent in the following packfile.

  • The server sends an "unshallow obj-id" line for each commit which the client has indicated is shallow, but is no longer shallow as a result of the fetch (due to its parents being sent in the following packfile).

  • The server MUST NOT send any "unshallow" lines for anything which the client has not indicated was shallow as a part of its request.

    wanted-refs section
        * This section is only included if the client has requested a
          ref using a 'want-ref' line and if a packfile section is also
          included in the response.
  • Always begins with the section header "wanted-refs".

  • The server will send a ref listing ("<oid> <refname>") for each reference requested using want-ref lines.

  • The server MUST NOT send any refs which were not requested using want-ref lines.

    packfile-uris section
        * This section is only included if the client sent
          'packfile-uris' and the server has at least one such URI to
          send.
  • Always begins with the section header "packfile-uris".

  • For each URI the server sends, it sends a hash of the pack’s contents (as output by git index-pack) followed by the URI.

  • The hashes are 40 hex characters long. When Git upgrades to a new hash algorithm, this might need to be updated. (It should match whatever index-pack outputs after "pack\t" or "keep\t".

    packfile section
        * This section is only included if the client has sent 'want'
          lines in its request and either requested that no more
          negotiation be done by sending 'done' or if the server has
          decided it has found a sufficient cut point to produce a
          packfile.
  • Always begins with the section header "packfile"

  • The transmission of the packfile begins immediately after the section header

  • The data transfer of the packfile is always multiplexed, using the same semantics of the side-band-64k capability from protocol version 1. This means that each packet, during the packfile data stream, is made up of a leading 4-byte pkt-line length (typical of the pkt-line format), followed by a 1-byte stream code, followed by the actual data.

    The stream code can be one of:
          1 - pack data
          2 - progress messages
          3 - fatal error message just before stream aborts

server-option

If advertised, indicates that any number of server specific options can be included in a request. This is done by sending each option as a "server-option=<option>" capability line in the capability-list section of a request.

The provided options must not contain a NUL or LF character.

object-format

The server can advertise the object-format capability with a value X (in the form object-format=X) to notify the client that the server is able to deal with objects using hash algorithm X. If not specified, the server is assumed to only handle SHA-1. If the client would like to use a hash algorithm other than SHA-1, it should specify its object-format string.

session-id=<session id>

The server may advertise a session ID that can be used to identify this process across multiple requests. The client may advertise its own session ID back to the server as well.

Session IDs should be unique to a given process. They must fit within a packet-line, and must not contain non-printable or whitespace characters. The current implementation uses trace2 session IDs (see api-trace2 for details), but this may change and users of the session ID should not rely on this fact.